→ Бактериологический метод лабораторной диагностики инфекционных болезней

Бактериологический метод лабораторной диагностики инфекционных болезней

Это основной метод, используемый при лабораторной ди­агностике инфекционных заболеваний. Сущность бактериологи­ческого метода исследования – посев патологического материа­ла от больных и выделение чистой культуры возбудителя с по­следующей идентификацией его по морфологическим, культуральным, тинкториальным, биохимическим и антигенным приз­накам.

Метод выделения чистых культур, позволяющий изолиро­вать отдельные виды микробов из той или иной естественной среды их обитания, является важнейшим методом микробиоло­гического исследования. Первым, кто предложил метод выделения чистой культуры, был Л. Пастер.

Способ Пастера, основанный на применении жидких пита­тельных сред, обеспечивал выделение чистой культуры преиму­щественно из материала, содержащего один вид микроба (например, из крови при септицемии и др.). Он был менее эффек­тивен в тех случаях, когда необходимо было изолировать от­дельные виды микроорганизмов из их смеси. Между тем, в есте­ственных условиях материал для бактериологического исследования (мокрота, гной, почва, вода и др.) чаще всего содержит смесь разнообразных микроорганизмов.

Успешное выделение бактериальных смесей и изолирован­ное изучение отдельных видов стало возможным благодаря усо­вершенствованию метода выделения чистых культур Робертом Кохом (R. Косh), применившим для этой цели в 1881 годуплот­ные питательные среды, на которых при посеве удается распре­делить материал таким образом, что отдельные микробные клет­ки располагаются изолированно друг от друга. При соответ­ствующих условиях (питательная среда, оптимальная температу­ра) размножение изолированных клеток дает потомство одного и того же вида, т.е. чистую культуру данного вида микробов .

Через известный период (чаще всего через сутки) на тех мес­тах плотной питательной среды, на которых оказались изолиро­ванные клетки, образуются популяции размножившихся микро­бов – так называемыеколонии, видимые невооруженным гла­зом. Они не представляют собой хаотического скопления микро­бов, о чем можно судить уже по тому, что для многих видов мик­робов колонии имеют характерную структуру, в силу чего можно ориентировочно определить флору исследуемого материала и выбрать те колонии, которые подлежат дальнейшему изучению. Пересев таких колоний на соответствующую питательную среду и представляет собой выделение чистой культуры.

Выделение чистых культур с последующей их идентифика­цией имеет первостепенное значение в диагностике инфекцион­ных заболеваний, обеспечивая быстрое их распознавание, свое­временное лечение и профилактику. Оно не менее важно в определении микрофлоры при исследовании санитарно-гигиенического состояния объектов внешней среды (воздух, вода, почва и т.д.), а также при выполнении научных исследований.

В настоящее время имеются многочисленные методы выде­ления чистых культур. Некоторые из них используются ограни­ченно, другие находят широкое применение. Наиболее универ­сальными являются излагаемые ниже методы выделения чистых культур бактерий (метод Дригальского). В то время как другие микроорганизмы – спирохеты, простейшие – требуют применения специальных методов выделения или совсем не могут быть выделены на искусственных питательных средах (некоторые простейшие, риккетсии, вирусы).

Методы выделения чистых культур из микробных смесей принято делить на две основные группы: методы, основанные на принципе механического разобщения микробов в питательной среде, и методы, основанные на использовании биологических свойств микробов. Первая группа включает методы изолирова­ния отдельных клеток: 1) в глубине питательной среды; 2) на поверхности среды и 3) под контролем глаза. Во второй группе ис­пользуют такие свойства микробов, как их подвижность, отно­шение к температуре, кислороду и их патогенные свойства.

Техника посева и пересева

Посевом в микробиологической практике называют внесе­ние в стерильную питательную среду какого-либо исследуемого материала для обнаружения микроорганизмов.

Пересев – это перенос выращенных микроорганизмов в стерильную среду. Посевы и пересевы микробов являются одним из наиболее распространенных приемов в микробиологической практике.

Пересевы производят так, чтобы в питательную среду не попали из воздуха или с поверхности окружающих предметов посторонние микроорганизмы. Для этого необходимо строго со­блюдать следующие приемы:

1) посевы производят непосредственно около зажженной горелки, в пламени которой стерилизуют петли, пинце­ты, ватные пробки, края пробирок;

2) в левую руку берут одну пробирку с пересеваемой куль­турой, другую (со стерильной питательной средой) дер­жат в наклонном положении между большим и указа­тельным пальцами;

3) петлю держат в вертикальном положении над пламенем горелки и прокаливают ее металлическую часть докрас­на, а затем наклоняют горизонтально и стерилизуют держатель петли;

4) вынимают ватные пробки и держат их безымянным пальцем и мизинцем правой руки; класть пробки на стол или на какой-нибудь предмет не рекомендуется;

5) обжигают края обеих пробирок;

6) вносят петлю в пробирку с пересеваемой культурой осторожно, не касаясь стенок, захватывают каплю жид­кости или небольшое количество налета на твердой среде и переносят, стараясь не задеть стенок, во вторую про­бирку с обеспложенной питательной средой;

7) петлю вынимают, обжигают края пробирок и внутренние концы пробок. Если ватная пробка загорится, то ею за­крывают пробирку, а наружный конец гасят рукой или пинцетом;

8) петлю вновь обжигают в пламени, на пробирке делают соответствующую надпись: название культуры и дату по­сева.

Посев в жидкую среду можно производить пастеровской или градуированной пипеткой. При использовании пастеровской пипетки обожженным пинцетом следует надломить запаянный конец и слегка обжечь всю пипетку. Пробирку с исследуемой культурой помещают в левую руку, а пипетку – в правую между большим и средним пальцами, зажав ее верхнее отверстие указа­тельным пальцем.

Вынув ватную пробку из пробирки, обжигают края послед­ней. Осторожно опускают пипетку в пробирку и снимают указа­тельный палец. Затем закрывают указательным пальцем верхнее отверстие пипетки, вынимают ее из пробирки. Ватную пробку и края пробирки, перед тем как закрыть, обжигают. Исследуемый материал переносят в жидкую среду. После по­сева пипетки помещают в дезинфицирующий раствор.

Посев на плотные среды. При посеве на косой агар наносят прямой или зигзагообразный штрих. Для этого петлю с засе­ваемым материалом вводят в пробирку до скопившейся на дне конденсационной воды и осторожно, не взрыхляя агар, наносят штрих. Сплошной посев получают при размазывании посевного материала по всей поверхности косого агара.

На плотной среде в чашке Петри посев производят следую­щим образом. Питательную среду в пробирках расплавляют на кипящей водяной бане, охлаждают до 48-50°С и разливают ров­ным слоем высотой 3-5 мм в стерильные чашки. Застывшую среду подсушивают в термостате в закрытых чашках в течение 20-30 минут. Открытые чашки кладут вверх дном на полки тер­мостата, покрытые стерильной бумагой. Рядом с чашками по­мещают крышки. При подсушивании с поверхности питательной среды и внутренней поверхности чашек испаряется конденсаци­онная вода. Посев делают петлей в виде параллельных штрихов или стеклянным шпателем.

При определении вида микроба и для выращивания ана­эробов производятпосев уколом в столбик агара или желатина. Для этого пробирку переворачивают кверху дном и длинной прямой иглой с посевным материалом прокалывают столбик среды сверху вниз до самого дна. Затем иглу осторожно вынимают и пробирку закрывают обожженной ватной пробкой. Если необходимы особые меры предосторожности против инфицирования, посевы ведут в специальном шкафу для пересева чистых культур. Засеянные пробирки и чашки Петри помещают в термостат для выращивания.

Микроорганизмы и споры, находящиеся внутри питатель­ных сред или на их поверхности, не могут передвигаться, а оста­ются в том месте, где они находились в момент застывания. Каж­дая клетка или спора начинает размножаться и через 2-3 дня образуетколонию – огромное количество клеток одного вида. Если колония образовалась из одной клетки, то это будет чистая культура того микроорганизма, из клетки которого она выросла.

Выросшие колонии просматривают сначала невооруженным глазом, а затем с помощью лупы или под микроскопом. При этом нельзя не заметить, что колонии отличаются по внеш­нему виду, окраске, строению и т.д.

Одним из самых достоверных методов исследования, который проводится в лабораториях больниц и поликлиник является бактериологический. Это достаточно сложный, но очень важный анализ, по которому ученые могут точно сказать, каким возбудителем вызвано недомогание.

Чаще всего простой обыватель встречается с таким понятием, как бакпосев. По сути, это просто одна из составляющих бактериологического метода.

Бактериологический метод исследования представляет собой взятие у человека биологического материала с целью его дальнейшего исследования, причем исследоваться будет материал на наличие в нем определенных бактерий. Для этого, собранное содержимое пробирок будет помещено в специальные среды, в которых бактерии будут «выращиваться». И по тому, где есть рост и размножение, и будет определен источник инфекции.

Такой тип исследования распространен в сфере инфекционных заболеваний, когда для выбора правильного лечения необходимо точно знать возбудителя, так как некоторые бактерии устойчивы даже к самым сильным антибиотикам широкого спектра действия.

К тому же, такой тип исследования применяется многими санитарно — эпидемиологическими проверками на предприятиях общественного питания для того, чтобы предупредить распространение того или иного заболевания.

На сегодняшний день бактериологический метод, или как проще сказать бакпосев, используется часто, причем главная задача специалиста состоит в том, чтобы взять у человека материал до того момента, пока ему не начнут проводить противомикробную терапию.

Микробиология это одна из тех точных наук, которая не терпит ошибок. Именно поэтому не так-то просто стать микробиологом. Нужна усидчивость, внимательность, а также сила воли, потому что нередко приходится сидеть месяцами над одним и тем же материалом, чтобы получить хоть какой-то результат.

Бактериологический метод исследования в микробиологии важен потому, что позволяет изучить бактерии, понаблюдать за ними в благоприятной для них среде, а также изучить реакцию на тот или иной препарат.

К тому же, благодаря исследованию бактерий на сегодняшний день стало возможным определить, какой возбудитель вызывает то или иное заболевание, и спасти множество жизней. Именно поэтому этот метод занимает такое важное место в микробиологии.


Забор материала для анализов

Для того чтобы получить максимально достоверные результаты, работнику лаборатории или медицинской сестре необходимо соблюсти все гигиенические процедуры, а также хорошо простерилизовать инструмент. И только после этого можно брать образцы.

Чаще всего у человека берут материалы для бактериологического исследования:

  1. Кал. Обычно такой анализ назначается, если у человека имеются все симптомы кишечной инфекции. Сделать это необходимо, потому что практически все бактерии, попавшие в организм, оказывают разрушительное действие, да и не каждый антибиотики способен положительно воздействовать на все типы возбудителей.
  2. Слизь из носоглотки и зева. Чаще всего анализы из носоглотки и зева берутся в случае частой ангины, а также надолго затянувшего насморка, потому что в большинстве случаев если такое случается, то возбудитель оказывается намного серьезнее, чем предполагают врачи до получения результатов.
  3. Мокрота их бронхов. Если у человека воспаление легких, то его точно направят на сдачу этого анализа.
  4. Моча. Моча у пациента для бактериологического в случае подозрения на инфекцию мочеполовой системы.
  5. Спинномозговая жидкость. Иногда пациенты поступают в больницу с параличом конечностей, но при этом никаких симптомов других болезней у него нет, то есть с мозговой активностью все в порядке, с проводимостью по нервным окончаниям тоже. Здесь причина может крыться в проникновении инфекции в спинной мозг. Именно поэтом, чтобы как можно быстрее выяснить причину, необходимо взять посев.
  6. Содержимое очагов воспаления.
  7. Содержимое кисты.

Больше информации об анализе «посев на флору» можно узнать из видео.

Именно благодаря этим материалам из человеческого организма можно провести точное исследование и выявить проблему. Правда, несмотря на множество достижений в микробиологии, бактериологический посев делает не так быстро.

Сроки получения результатов

Несмотря на то, что всем специалистам хочется получить анализы как можно быстрее, да и часто нет времени просто сидеть и ждать, существуют определенные сроки, по истечении которых можно получить результаты исследования.

В микробиологии существуют четкие временные рамки, которые выглядят примерно так:

  • Если был взят кал на анализ, то результата можно получить уже через пять дней. В худшем случае дело может затянуться до недели. Но уже на пятые сутки врачи примерно могут скатать о возбудителе.
  • Если были взяты анализы из носоглотки, то в среднем через шесть дней уже будут готовы результаты.
  • Если бы взят анализ на , то тут придется подождать десять дней, так как анализ очень объемный и для его проведения требуется намного больше времени.
  • Если необходимо выяснить флору организма, то придется подождать от четырех до семи дней, в зависимости от того, как будут проявлять себя бактерии.
  • Если был взят анализ урогенитального тракта, то точные результаты будут готовы через неделю, то есть 7 суток.

В том случае, если анализы берутся у пациента, который находится в стационаре, то его лечащий врач уже сможет узнать результаты примерно на четвертые или пятые сутки, так как чаще всего лаборатория расположена непосредственно в больнице.

А вот если анализы сдаются в простой муниципальной поликлинике, то нужно быть готовым к задержкам. Для того чтобы как можно быстрее получить результаты, и чтобы они были как можно достовернее, лучше обратится в одну из лабораторий в городе напрямую. Каждая из них оказывает услуги на платной основе.


Как и любой другое исследование, бактериологический метод включает в себя несколько этапов, каждый из которых не менее важен, чем предыдущий.

Первый этап включает в себя:

  1. Подготовка. Необходимо правильно взять исследуемый материал, довезти его до лаборатории, а также при необходимости обработать.
  2. Обогащение. Такая процедура проводится только в том случае, если количества бактерий в полученном материале не хватает. Чаще всего это происходит с кровью. В этом случае, часть крови помещают в теплое место в такую температуру, которая сподвигнет бактерии к размножению.
  3. Микроскопия. После того, как все вышеперечисленные процедуры проведены, необходимо исследовать материал под микроскопом для того, чтобы определить микрофлору, количество, а также основные свойства.
  4. Создание колоний. После того, как под микроскопом были выявлены различные микрофлоры, каждую из них отделяют и помещают в специальную емкость.

Второй этап включает в себя:

  1. Изучение свойств колоний. Данная процедура включает в себя изучение поведения бактерий, насколько быстро они размножаются, как приспосабливаются и т.д. В том случае, если в одной колонии образовалось еще несколько других, то необходимо изучить свойства каждой.
  2. Чистая культура. Здесь каждую из колоний помещают в специально определенную под нее емкость и наблюдают за тем, что произойдет дальше.

Третий этап включает в себя:

  1. Измерение уровня роста и чистоты культуры. В зависимости от того, насколько быстро произошло размножение, а также, не появились ли из этой другие культуры, можно определить семейство бактерий. Так, по цвету окрашивания раствора ученые точно могут сказать о том, как бактерия оказывает разрушительные действия в организме.
  2. Проверка на антибиотики. После того, как специалист точно смог определить тип культуры, он должен проверить ее на реакцию на те или иные антибиотики.

Бактериологический метод исследования достаточно сложный процесс, который требует сосредоточенности и терпения. Именно поэтому не все люди, получающие медицинское образование, хотят стать микробиологами.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.


УТВЕРЖДЕНЫ Министерством здравоохранения РСФСР от 19 декабря 1991 г.


Методические рекомендации составил А.Н.Калюк.

Бактериологические исследования на условно-патогенные микроорганизмы

Комплексное лабораторное изучение микрофлоры включает бактериоскопическое и бактериологическое исследования материала, проводимые в динамике при поступлении на стационарное лечение, в процессе лечения, а также по показаниям у больных, лечащихся амбулаторно. Посевы диагностического материала целесообразно производить на плотные питательные среды, что исключает подавление роста одного микроорганизма другим и позволяет дать количественную оценку числа выросших колоний. Интенсивность роста микроорганизмов может выражаться в крестах и соответствовать содержанию определенного количества микробных клеток в 1 мл диагностического материала:

++++ обильный рост сливающихся колоний (10 м/кл)

+++ массивный рост изолированных колоний (10 м/кл)

++ умеренный рост множества сосчитываемых колоний (не менее 50) (10-10 м/кл)

+ скудный рост единичных колоний (30-50) (10 м/кл).

При дозированном посеве определяют абсолютное содержание микроорганизмов в 1 мл или 1 г исследуемого материала. Этиологически значимым содержанием бактерий в 1 мл (1 г) материала признается 10 и выше. Количественное преобладание определенного вида микроорганизма является одним из показателей его участия в гнойно-воспалительном процессе. Окончательная интерпретация результатов бактериологического исследования производится после изучения анамнестических данных, клинической симптоматики, результатов антибактериальной терапии. При направлении материала на посев необходимо соблюдать определенные правила. Материал должен быть исследован до начала антибактериальной терапии или через такой период после введения антибактериальных препаратов, который необходим для их элиминации из организма больного (2-3 дня при анализах мокроты, 4-7 дней - мочи). Применение антибиотиков в 3-4 раза снижает частоту выделения микроорганизмов. Посевы диагностического материала проводятся в динамике (3-5 раз), что уточняет этиологию заболевания, дает возможность проследить длительность персистенции возбудителя, контролировать эффективность проводимой терапии. Интервал между сбором и посевом материала не должен превышать 1-2 ч.

Исследование микрофлоры верхних дыхательных путей (глотка, нос, ротовая полость). Материалом для исследования служат: слизь, гнойное отделяемое, корочки, пленка, кусочки инфильтратов при биопсии. Материал для микробиологического исследования из ротовой полости забирают натощак стерильным ватным тампоном со слизистой оболочки у выхода протоков слюнных желез, поверхности языка, из язвочек (соскоб ложечкой), с наиболее пораженных мест. При наличии пленки последнюю снимают пинцетом. Материал из носовой полости забирают сухим стерильным ватным тампоном. Материал засевают на чашки Петри с кровяным, желточно-солевым агарами, среду Сабуро. При посеве тампоном материал втирают в среду со всей поверхности тампона на небольшом участке 1-2 см, а затем штрихами по всей поверхности. Одновременно с посевом приготавливают мазки и окрашивают по Граму.

Исследование микрофлоры нижних дыхательных путей. Основным материалом для исследования является мокрота, которая собирается в день исследования, утром, после чистки зубов и полоскания полости рта свежекипяченой водой. При обильном выделении мокроты первые порции следует откашлять в плевку, а последующие собираются в стерильную посуду и доставляются в лабораторию. Для изучения микрофлоры мокроты применяют как посев неразведенной мокроты (качественный метод), так и метод разведения, который получил название количественного. При качественном методе для посева используются гнойные комочки мокроты, отмытые в физиологическом растворе от микрофлоры ротовой полости. При количественных методах гомогенизируется 1 мл мокроты. Затем производятся разведения, позволяющие уменьшить в ней количество микроорганизмов ротовой полости. При обоих методах одновременно с посевом приготавливается мазок, который окрашивается по Граму. Исследованию подлежат гнойная и слизисто-гнойная мокрота, в которой присутствуют лейкоциты и клетки альвеолярного эпителия, клетки, вкрапленные в муцин, присутствие которых характерно для экскрета нижних отделов дыхательных путей. Обращают внимание на преобладающую в мазке нативной мокроты микрофлору, особенно капсульные диплококки (пневмококки), мелкие грамотрицательные палочки (палочка Пфейффера) и др.

Качественный метод. В лаборатории мокроту выливают в чашку Петри, выбирают 2-3 гнойных комочка, которые однократно отмывают в физиологическом растворе, после чего засевают на кровяной и желточно-солевой агары, среды Эндо и Сабуро. Посев производят стерильным стеклянным шпателем, равномерно растирая материал на поверхности питательной среды. На чашку с кровяным агаром сразу же после посева накладывают диски с антибиотиками (стрептомицином, пенициллином, тетрациклином, эритромицином и левомицетином), что позволяет получить экспресс-информацию о лекарственной чувствительности преобладающей в посеве микрофлоры. На второй день учитывают количество выросших колоний (этиологически значимым считается рост более 50 колоний), однородность популяции и лекарственную чувствительность при росте их в монокультуре.

Количественный метод. Из доставленной в лабораторию мокроты берут 1 мл, добавляют 9 мл мясопептонного бульона и гомогенизируют в банке с бусами в течение 20 мин. Из полученной эмульсии готовят десятикратные последовательные разведения. Посев осуществляют в обратном порядке с меньшего разведения. Засевается по 0,1 мл из разведенной мокроты 10 и 10 на чашку с кровяным агаром. Посев на желточно-солевой агар, среды Эндо и Сабуро делают из исходного разведения 1:10. Посевы инкубируют в течение суток при 37°С. На вторые сутки чашки просматривают и учитывают численность каждого из видов микроорганизмов в миллионах. Диагностически значимым признается содержание бактерий 10 м/кл и выше в 1 мл мокроты.

Посев промывных вод бронхов, лаважной жидкости. Из исследуемого материала отбирают комочки слизи, которые без предварительного отмывания в физиологическом растворе засевают на плотные питательные среды (см. посев мокроты) и в пробирку с сахарным бульоном. При отсутствии комочков слизи производят посев материала, набранного в пастеровскую пипетку. Инкубация в течение суток при 37°С.

Исследование микрофлоры глаз. Пробы на исследование отбирает врач стерильным ватным тампоном или стеклянной палочкой. Материал забирается с пораженных мест и засевается в 0,5% сахарный бульон. В случае отсутствия роста через 48 часов выдается отрицательный ответ.

Исследование мазков из уха. Материал забирают стерильным ватным тампоном из слухового канала и производят посев на кровяной и желточно-солевой агары, среду Сабуро, втирая материал на участке среды, после чего растирают по всей чашке.

Исследование мочи. Исследованию подлежит средняя порция утренней мочи, полученная при нормальном мочеиспускании или взятая катетером. Показателем бактериурии, имеющим клиническое значение, считается наличие 100000 и более микробов в 1 мл мочи.

Первый день исследования. Производят посев одной стандартной (3 мм) бактериологической петли мочи (тщательно перемешанной) по секторам А, I, II и III в чашку Петри с 5% кровяным или простым агаром. При этом в участке среды сектора А делают посев, равномерно втирая материал по всей поверхности, затем не беря нового материала, этой же петлей делают посев штрихами на питательную среду в секторе I (3-4 штриха), из сектора I во II, из II сектора - в III.

Таблица 1

Число колоний бактерий в различных секторах чашки Петри в зависимости от степени бактериурии (по В.С.Рабиновскому и В.В.Родоман)

Количество бактерий в 1 мл мочи

Число колоний в различных секторах чашки Петри

Менее 1 тыс.

роста нет

роста нет

очень большое

от единич. до 25

Второй день исследования. Определяют степень бактериурии по табл.1 в зависимости от того, в каком секторе обнаружен рост колоний микроорганизма. При наличии менее 100 тыс. микробов в 1 мл мочи рост колоний наблюдается только в секторе А чашки Петри. Появление роста колоний в I секторе указывает на более высокую степень бактериурии. Подсчет колоний в секторе с наименьшим ростом не представляет труда. Метод секторных посевов в большинстве случаев позволяет уже на второй день исследования выделить возбудителя заболевания в чистой культуре.

Исследование микрофлоры ран, пунктатов, экссудатов, резецированных тканей. Экссудаты и пунктаты засевают пастеровской пипеткой в пробирки с кровяным и простым мясопептонным агаром, сахарным бульоном. Тампон с диагностическим материалом засевают на чашки Петри с 5% кровяным и 10% желточно-солевым агарами. Материал втирается по краю среды, а затем рассеивается по чашке при помощи этого же тампона или бактериологической петли.

Исследование микрофлоры женских половых органов. Выделения собирают с помощью стерильного ватного тампона и засевают на чашки Петри с 5% кровяным агаром, желточно-солевым агаром и в пробирку с сахарным бульоном, а также на среду Эндо.

Исследование желчи. Желчь собирают при зондировании или во время операции в стерильные пробирки и доставляют в лабораторию не позднее 2 ч. от момента забора. 0,1 мл желчи высевают на чашку с кровяным агаром и на среду Эндо. Посевы и оставшийся исходный материал помещают в термостат при 37°С. Через 24 часа учитывают результаты первичных посевов с подсчетом количества колоний каждого вида на плотных питательных средах.

Исследование крови. Кровь сеют у постели больного после тщательной обработки кожи (спирт, эфир). Из локтевой вены берут 10 мл крови, которую выливают в две колбы: первую со 150-200 мл сахарного бульона и вторую с тиогликолевой средой (по 5 мл). Посевы выдерживают в термостате в течение 10 дней. На 2, 3, 5 и 10-й дни производят контрольные высевы на чашки Петри с 5% кровяным агаром. Посев 5 мл крови можно произвести во флакон с питательной средой в двух фазах: плотной и жидкой (скос 5% кровяного агара с 1% глюкозы и 50 мл 0,5% сахарного бульона). Такая методика исключает необходимость многократных пересевов, устраняет возможность загрязнения посева микрофлорой окружающей среды, позволяет учесть количество выросших колоний (т.е. оценить напряженность бактериемии). Посев помещают в термостат при 37°С на 10 суток. Ежедневно содержимое флаконов взбалтывают и наклоном флакона смачивают поверхность скоса плотной питательной среды. При появлении роста колоний на скосе кровяного агара с них приготавливают мазки и далее идентифицируют по общепринятым в бактериологии правилам. При отсутствии роста микроорганизмов на 10-е сутки дается окончательный ответ - посев крови стерилен.

Исследование на дисбактериоз кишечника. На предварительно подготовленные и взвешенные (подпергамент или вощанку) стерильные бумажки размером 3x2 берут произвольное количество фекалий и взвешивают на торзионных весах. Бумажку вместе с материалом помещают в стерильную пробирку. Вес навески фекалий, за вычетом веса бумажки, умножают на 9. Полученная после умножения сумма равна количеству физиологического раствора, которое необходимо добавить в пробирку. Разведение 1:10 (I).

Например: вес бумажки 20 мг

вес фекалий с бумажкой 420 мг

420-20=400 мг; 400 мг9=3600 (3,5 мл).

После эмульгирования стеклянной палочкой или стерильной пипеткой взвеси дают отстояться при комнатной температуре 10-15 мин и 0,1 мл переносят в следующую пробирку с 9,9 мл физиологического раствора (разведение 10). Затем производят разведение фекалий до титра 10. Из основного разведения (10) производят посев на плотные питательные среды для выделения патогенных микробов семейства кишечных (среду Плоскирева, Левина). Одновременно делают массивный (0,5-1,0) посев на жидкие среды обогащения (Мюллера, селенитовую, магниевую). Из пробирки, в которой фекалии разведены до 10, вносят по 0,1 мл на поверхность среды Сабуро и ЖСА. Из разведения 10 производят посевы на чашки с 0,5% кровяным агаром и среду Эндо по 0,1 мл. Для получения роста изолированных колоний применяют стеклянные бусы или шпатели. Стеклянные круглые бусы 12-14 штук (заранее простерилизованные) опускают в чашку с посевным материалом. При легком покачивании чашки с бусами в течение 1 мин материал равномерно распределяется по питательной среде. Посев бусами начинают со среды, на которой посеяно наибольшее разведение (10), перенося бусы на меньшее разведение. Для выделения анаэробных бифидобактерий производят высев из разведений 10, 10 и 10 в 2 пробирки (по 0,1 и 1 мл) регенерированной в течение 1 ч среды Блаурокка. После посева пробирки энергично вращают между ладонями для равномерного распределения взвеси. Среды для выращивания аэробов помещают в термостат при 37°С (Сабуро - при 20°) на 18-24 часа. Рост анаэробов на среде Блаурокка учитывают через 48-72 ч. На следующий день после посева определяют количество кишечной палочки и других микробов в 1 г фекалий по числу колоний, выросших на соответствующей питательной среде с пересчетом на количество посеянного материала и степени его разведения. Так, если на среде Эндо выросло 30 лактозонегативных колоний при посеве 0,1 мл фекалий из разведения 10 (1:100000), при расчете следует 30 умножить на 10 и на 100000, т.е. в 1 г будет 30000000 лактозонегативных энтеробактерий. Учитывают число лактозонегативных и гемолитических колоний кишечной палочки, наличие стафилококка, протея и других микроорганизмов. Определяются ферментативные свойства и лекарственная чувствительность микроорганизмов. Из пробирок со средой Блаурокка приготавливаются мазки. Под микроскопом бифидобактерий имеют вид характерных грамположительных палочек, утолщенных или разветвленных на концах, расположенных в виде римской цифры V, часто в виде скоплений. В ответе бактериолога указываются процент или абсолютное количество каждой группы микроорганизмов.

Идентификация микроорганизмов. Методы идентификации микроорганизмов основаны на изучении морфологических, культуральных и биохимических, антигенных и др. свойств культур.

Морфологические свойства изучаются путем бактериоскопии диагностического материала и мазков из колоний, выросших на плотных и жидких питательных средах культур. Мазки на предметных стеклах фиксируют на пламени горелки или в жидких фиксаторах (96°, спирт, смесь Никифорова) окрашивают по Граму. При просмотре мазков из мокроты оценивают всю имеющуюся микрофлору: наличие скоплений грамположительных кокков (стафилококки, микрококки), цепочек грамположительных кокков (стрептококки), мелких ланцетовидных диплококков, окруженных зоной неокрасившейся капсулы (пневмококк), грамотрицательных кокков (нейссерии); грамотрицательных палочек (кишечная, синегнойная, протей); грамотрицательных палочек с закругленными концами, окруженных капсулой в виде светлого ореола (клебсиелла), мелких грамотрицательных палочек в виде скопления (гемофильные бактерии) и др. Бактериоскопическое исследование является ориентировочным. Дальнейшее исследование включает посев материала на питательные среды, выделение чистых культур, их идентификацию и определение лекарственной чувствительности. Культуральные свойства изучают при просмотре выросших культур на плотных и жидких питательных средах. На плотных средах учитывают размер колоний, цвет, прозрачность, форму, наличие пигмента, гемолиз вокруг колонии и его характер и т.д. На жидких средах отмечают их прозрачность, наличие осадка (придонный рост) или пленки на поверхности среды. Исследование биохимических свойств основывается на определении ферментативной сахаролитической активности, способности утилизировать питательные вещества в аэробных и анаэробных условиях культивирования. Антигенные свойства культур изучаются при взаимодействии бактерий и их антигенов с соответствующими антисыворотками (реакции агглютинации, иммунофлюоресценции и др.). После изучения морфологических и культуральных свойств осуществляют постановку дифференциальных тестов с чистыми культурами микроорганизмов.

Грамположительные кокки. Грамположительные кокки относятся к семейству Micrococcaceae, включающему род Micrococcus и Staphylococcus и семейства Streptococcaceae.

Семейство Micrococcaceae. Для медицинской микробиологии необходимо дифференцировать стафилококки от микрококков. Изучают морфологические свойства, гемолиз, способность расти на среде с солью, пигментообразование, ферментацию глюкозы до кислоты в анаэробных условиях, ферментацию глицерина. Микрококки имеют в 2-3 раза больший размер клеток (0,5-3,5 мкм), не ферментируют глюкозу в анаэробных условиях и глицерин, имеют пигмент от желтого до розового. Дифференциация различных видов стафилококка осуществляется по комплексу тестов: плазмокоагулирующей способности, лецитиназной активности, ферментации маннита в анаэробных условиях, пигментообразованию, чувствительности к новобиоцину (тест - положительный у St. aureus и St. epidermidis и отрицательный у St. saprophyticus). Для выделения стафилококка исследуемый материал засевают на дифференциально-диагностическую среду: желточно-солевой агар. При окраске по Граму стафилококк окрашивается грамположительно и располагается одиночно, попарно или образует скопления в виде неправильных кучек. Стафилококк устойчив к повышенным концентрациям в среде хлористого натрия (7-10%), что используется для его выделения из патологического материала. При росте на мясопептонном бульоне вызывает его равномерное помутнение и дает хлопьевидный осадок. На плотных питательных средах стафилококк растет в виде круглых блестящих колоний с ровными краями (0,5-1,5 мм в диаметре). На второй день исследования оценивают количественный рост выросших колоний, учитывают лецитиназную активность, выделяют чистую культуру микроба (пересев на пробирки с молочным или простым скошенным агаром). На третий день - ставят тесты для дифференциации и на лекарственную чувствительность.

При определении коагулазной активности пользуются лиофилизированной плазмой крови кролика, разведенной стерильным физиологическим раствором 1:5 и разлитой в стерильные пробирки по 0,5 мл в каждую. В пробирку засевают 1 петлю суточной агаровой культуры исследуемого штамма и помещают в термостат при 37°С. Учет результатов производят через 30 мин, 1 час, 2 часа и 24 часа. Положительными считаются все степени свертывания плазмы от небольшого сгустка, остающегося неподвижным при перевертывании пробирки.

Лецитиназная активность определяется на желточно-солевом агаре. Учет реакции производят через 24-48 часов макроскопически по наличию мутной зоны и радужного венчика вокруг колоний стафилококка, что свидетельствует о наличии у них фермента лецитиназы.

При изучении ферментации маннита посев суточной агаровой культуры испытуемого штамма производят уголком в столбик 1% агара с маннитом и вазелиновым маслом. При ферментации маннита столбик агар синеет. Положительной считается реакция при ферментации 2/3 столбика агара.

Для определения пигментообразования культуры стафилококка засевают на 10% молочный агар. Учет через 18-20 часов.

Определение гемолитической способности культуры стафилококка осуществляется на 5% кровяном агаре (донорская кровь без добавления антисептиков) по наличию просветления вокруг выросших колоний, которые четко выявляются в проходящем свете. Положительный гемолитический тест на агаре с кровью человека, как правило, обусловлен гемотоксинами, тогда как основную роль в патогенезе стафилококковых инфекций играет альфа-токсин, который можно выявить на агаре с кровью кролика.

Семейство Streptococcaceae. Стрептококки представляют собой большую и довольно гетерогенную группу микроорганизмов. Наиболее изученными являются аэробные представители: Streptococcus pyogenes, S. faecalis, S. pneumoniae. Микроб имеет сферическую форму, грамположителен, в мазках с плотных питательных сред располагается в виде коротких цепочек из 2-3 кокков, на жидких питательных средах дает более длинные цепочки. При выращивании стрептококков следует учитывать их повышенную потребность в питательных веществах. Поэтому для культивирования стрептококка применяют питательные среды, содержащие глюкозу (1%), кровь (5-10%), сыворотку (10-20%).

  • 4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
  • 5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
  • 6. Методы окраски микробов и их отдельных структур.
  • 7. Морфология и химический состав бактерий. Протопласты. L – формы бактерий.
  • 8. Ультраструктура бактерий.
  • 9. Спорообразование у бактерий. Патогенные спорообразующие микробы.
  • 10. Капсулы у бактерий. Методы их обнаружения.
  • 11. Жгутики и включения у бактерий. Методы их обнаружения.
  • 14. Рост и размножение бактерий. Кинетика размножения бактериальной популяции.
  • 15. Морфология и ультраструктура риккетсий. Морфология и ультраструктура хламидий. Патогенные виды.
  • 16. Морфология и ультраструктура спирохет. Классификация, патогенные виды. Методы выделения.
  • 17. Морфология и ультраструктура микоплазм. Патогенные для человека виды.
  • 18. Систематика и номенклатура вирусов. Принципы современной классификации вирусов.
  • 19. Эволюция и происхождение вирусов. Основные отличия вирусов от бактерий.
  • 20. Морфология, ультраструктура и химический состав вирусов. Функции основных химических компонентов вируса.
  • 21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.
  • 22. Вирусологический метод диагностики. Методы культивирования вирусов.
  • 23. Культуры клеток. Классификация клеточных культур. Питательные среды для культур клеток. Методы индикации вирусов в культуре клеток.
  • 24. Морфология, ультраструктура и химический состав фагов. Этапы репродукции фагов. Различия между вирулентными и умеренными фагами.
  • 25. Распространение фагов в природе. Методы обнаружения и получения фагов. Практическое использование фагов.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.
  • 27. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 28. Ферменты бактерий, их классификация. Принципы конструирования питательных сред для изучения ферментов бактерий.
  • 29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.
  • 30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.
  • 31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.
  • 32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.
  • 34. Взаимоотношения между микроорганизмами в ассоциациях. Микробы – антагонисты, их использование в производстве антибиотиков и других лечебных препаратов.
  • 35. Влияние на микробы физических, химических и биологических факторов.
  • 36. Стерилизация и дезинфекция. Методы стерилизации питательных сред и лабораторной посуды.
  • 38. Формы и механизмы наследственной изменчивости микроорганизмов. Мутации, репарации, их механизмы.
  • 43. Генетика вирусов. Внутривидовой и межвидовой обмен генетическим материалом.
  • 44. Основные группы антимикробных химиопрепаратов, применяемых в терапии и профилактики инфекционных болезней.
  • 45. Антибиотики. Классификация. Механизмы действия антибактериальных препаратов на микробы.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.

    Бактериологический метод заключается в выделении чистой культуры возбудителя (популяции, содержащей бактерии одного вида) и идентификации этого возбудителя является основным методом бактериологического исследования

    Изучение свойств микроорганизмов в бактериологической лаборатории с целью установления принадлежности к той или иной систематической группе (виду, роду) и называется их идентификация.

    В целом бактериологический метод исследования представляет собой многоэтапное бактериологическое исследование, которое длится 18- 24 часов.

    При бактериологическом методе в анаэростат помещают посевы анаэробов. Из аэростата удаляют воздух и заменяют его газовой смесью, которая не содержит кислород.

    Основой бактериологического метода является выделение чистой культуры возбудителя, которое происходит на первом этапе исследования. Для выделения чистой культуры возбудителя делают посев взятого материала. Посев делается, как правило, на плотные питательные среды, которые выбирают исходя из свойств предполагаемого возбудителя.

    При бактериологическом методе применяют по возможности среды, на которых растет только конкретный вид бактерий - элективные среды, или среды, позволяющие отличить предполагаемого возбудителя от других микроорганизмов или по-другому дифференциально-диагностические среды.

    При бактериологическом методе посев материала на питательные среды производят либо стеклянным или металлическим шпателем, либо бактериальной петлей таким образом, чтобы находящиеся в исследуемом материале бактерии рассеять по поверхности питательной среды. В результате такого рассеивания каждая бактериальная клетка попадает на свой участок среды.

    В том случае, если в результате бактериологического метода исследования предполагается в исследуемом материале содержание малого количества возбудителя, посев производят на жидкую питательную среду для его накопления, так называемую среду обогащения, которая оптимальна для данного микроорганизма. Далее осуществляют пересев из жидкой питательной среды на плотные среды, разлитые в чашках Петри. Засеянную возбудителем среду помещают в термостат обычно при определенной температуре, что важно для бактериологического метода.

    На втором этапе бактериологического метода исследования проводят изучение колоний бактерий, выросших на плотной питательной среде и происходящих от одной бактериальной клетки. (колония и является чистой культурой возбудителя). Производят микроскопическое и макроскопическое исследование колоний в отраженном и проходящем свете: невооруженным глазом, под малым увеличением микроскопа, с помощью лупы.

    Отмечают культуральные свойства колоний: их форму, величину, цвет, характер краев и поверхности, структуру, консистенцию. Далее для приготовления мазков используют часть каждой из намеченных колоний. Окрашивают мазки по Граму, микроскопируют, определяя тинкториальные (отношение к окраске) и морфологические свойства выделенной культуры и проверяя одновременно ее чистоту.

    Оставшуюся часть колонии пересевают в пробирки с оптимальной для данного вида средой, например, скошенным агаром, с целью накопления чистой культуры для более полного ее изучения. Пробирки перемещают на 18–24 часа в термостат. На втором этапе, кроме перечисленных исследований, нередко подсчитывают количество выросших колоний.

    Для того чтобы провести такое исследование готовят последовательные разведения взятого исследуемого материала, из которых на чашки с питательной средой производят высев, подсчитывают количество выросших колоний, умножают на разведение, из чего определяют содержание микроорганизмов в материале.

    Идентификация выделенной чистой культуры возбудителя и определение для этой культуры чувствительности к антибиотикам и другим химиотерапевтическим препаратам - третий этап бактериологичестого метода. Идентификацию выделенной бактериальной культуры производят по тинкториальным, морфологическим, биохимическим, культуральным, токсигенным, антигенным свойствам.

    Первым делом берут мазок из культуры, выросшей на скошенном агаре, исследуют морфологию бактерий и проверяют чистоту культуры выросших бактерий. Далее осуществляют посев выделенной чистой культуры бактерий на среды Гисса. Желательно провести посев и на другие среды для определения биохимических свойств.

    С помощью реакции нейтрализации токсина антитоксином in vivo или in vitro определяют токсинообразование микробов. В ряде случаев изучают и другие факторы вирулентности. Вышеперечисленные исследования, которые проводятся в бактериологической лаборатории, позволяют определить род или вид возбудителя.

    Метод бумажных дисков базируется на выявлении зоны подавления размножения бактерий вокруг дисков, которые пропитаны антибиотиками. В случае применения метода серийных разведений химический препарат - антибиотик с жидкой питательной средой разводят в пробирках, после чего засеивают в пробирки одинаковое количество бактерий. По отсутствию или наличию роста бактерий проводят учет результатов. В результате бактериологического метода исследования для определения идентичности штаммов, полученная антибиотикограмма может служить и эпидемиологическим целям.

    Могут проводиться повторные исследования при выявлении бактерионосительства т. к. можно не обнаружить возбудителя в одной порции материала.

     

     

    Это интересно: