→ Питание растений минеральное: основные элементы и функции различных элементов для растений. Необходимые растению элементы минерального питания Какие элементы необходимы растению

Питание растений минеральное: основные элементы и функции различных элементов для растений. Необходимые растению элементы минерального питания Какие элементы необходимы растению

В такой ситуации нужно внимательно посмотреть на появившиеся неблагополучные признаки голодания растений и срочно провести целевые подкормки.

В случае если пожелтели верхние листья, то растению явно не хватает кальция. Или же, наоборот, его излишнее количество. Такое явление также может наблюдаться, если вы поливаете сад жесткой водой.

Пожелтение и опадание нижних листьев говорит о том, что нужно сократить полив. Таким способом растение реагирует на повышенное увлажнение субстрата.

Иногда у зеленых питомцев развивается хлороз. Листья при этом бледнеют и раньше срока приобретают желтую окраску. Сопровождается это заболевание, как правило, отмиранием побегов. Такие явления развиваются у растений в условиях недостатка соединений железа в почве. Из древесных и кустарниковых культур повышенную чувствительность к железистому голоданию проявляют яблоня, слива, груша и малина. Быстро восстановить минеральное питание в таком случае поможет опрыскивание пострадавших растений раствором железного купороса. Для его приготовления 5 г порошка разводят в 10 л воды.

Слабый хлороз молодых листьев может сигнализировать о начавшемся медном голодании. Параллельно с этим у плодовых деревьев слишком рано останавливается рост верхушечных почек.

Приостановка роста и развития растений является симптомом борного голодания. Помимо этого у плодовых культур может развиваться гниль сердечка. Помочь растениям может раствор борной кислоты. Его необходимо вносить некорневым способом – опрыскиванием.

Если замечен краевой ожог листьев, то необходимо срочно подпитать растения калийными удобрениями. При этом для плодовых и ягодных культур наиболее подходящим удобрением будет сульфат калия, который вовсе не содержит хлора. Спасительным средством может быть и зола – в ней также отсутствует хлор и она особенно эффективна, если на участке кислые почвы.

Бледные листья с красноватым или желтоватым оттенком являются симптомом недостатка азота. Азотную подкормку вносят поверхностно или заделывая гранулы удобрения на небольшую глубину. Почва должна быть при этом достаточно увлажнена. Делать это необходимо срочно при первых же симптомах.

Появление бурых пятен на листьях между жилками говорит о недостатке магния. Эффективен в таком случае сульфат магния. Необходимо лишь помнить, что чем кислее субстрат, тем труднее растениям усваивать магний, и тем выше должны быть дозы этого удобрения.



Вот такие признаки голодания растений можно наблюдать в саду. И это не так уж плохо, ведь таким образом зеленые питомцы подают нам сигнал и просят помощи.

Недостаток питательных веществ

Всем известно, что недостаток питательных веществ отрицательно сказывается на росте и развитии растений, что естественно влияет на количество и качество собранного урожая. Сегодня я расскажу Вам о том, как наши самые распространенные любимые овощи реагируют на недостаток основных элементов питания – азота, фосфора, калия. А также о том, что нужно делать, если вы по внешним признакам определили нехватку того, или иного элемента.

Дефицит азота.

Проявляется сильнее всего при наличии высокой влажности почвы, особенно когда идут продолжительные дожди, а также при засухе или длительных холодах. При недостатке азота листья растений становятся мелкими, бледно-зеленого цвета с желтоватым оттенком, а плоды измельчаются и, как правило, опадают раньше положенного срока.

Рассмотрим конкретную реакцию того или иного овощного растения на недостаток азота:

Морковь - мелкие листья, очень медленно растут, становятся желтыми и отмирают.

Лук – слабо растет, узкие короткие листья светло-зеленого цвета, зачастую начинают краснеть с кончика листа.

Капуста – отстает в росте, становится карликовой, мелкие листья, сначала бледно-зеленые с желтоватым оттенком, а позднее делаются оранжевыми, быстро сохнут и вскоре опадают.

Свекла – чахнет, отстает в росте, имеет прямостоячие, тонкие черешки листьев. Цвет листьев от бледно зеленого, вплоть до желто-красного.

Помидоры – сильно угнетен общий рост. Мелкие листья становятся светло-зелеными с фиолетовым или желтым оттенком по жилкам. Очень быстро отмирают старые листья. Стебли жесткие и тонкие. Корни темнеют и вскоре отмирают. Томаты при недостатке азота имеют деревянистые, мелкие плоды, которые сначала имеют бледно-зеленый цвет, затем становятся ярко-красными и часто опадают преждевременно.



Огурцы – в росте отстают, имеют бледно-зеленые с желтым оттенком листья небольшого размера. Особенно быстро поникают и желтеют нижние листочки. Стебли волокнистые, тонкие, более жесткие, с бледной окраской. Развиваются огурцы при недостатке азота очень и очень медленно.

Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значительных количествах.

Питательными веществами называются вещества, необходимые для жизни организма. Элемент считается необходимым, если его отсутствие не позволяет растению завершить свой жизненный цикл; недостаток элемента вызывает специфические нарушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредственно участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.

Необходимость элементов можно установить только при выращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллированную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготовления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам (кроме 45 % углерода, 6,5 % водорода и 42 % кислорода, усвояемых в процессе воздушного питания) относятся следующие:

макроэлементы‚ содержание которых колеблется от десятков до сотых долей процента: азот‚ фосфор‚ сера‚ калий‚ кальций‚ магний;

микроэлементы, содержание которых колеблется от тысячных до стотысячных долей процента: железо‚ марганец‚ медь‚ цинк‚ бор‚ молибден.

Имеются еще и такие элементы, которые усиливают рост лишь определенных групп растений. Для роста некоторых растений засоленных почв (галофитов) оказывается полезным натрий. Необходимость натрия проявляется у растений С 4 и САМ. У этих растений показана необходимость натрия для регенерации ФЕП при карбоксилировании. Недостаток натрия у этих растений приводит к хлорозу и некрозам, а также тормозит развитие цветка. В натрии нуждаются и многие С 3 -растения. Показано, что этот элемент улучшает рост растяжением и выполняет осморегулирующую функцию, подобно калию. Благоприятное влияние оказывает натрий на рост сахарной свеклы.

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO 2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

Показана необходимость ванадия для Scenedesmus (зеленая одноклеточная водоросль), причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен.

Конец работы -

Эта тема принадлежит разделу:

Лекции по физиологии растений

Московский государственный областной университет.. д а климачев.. лекции по физиологии растений Москва климачев д а..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства. Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир-основа жизни на нашей планете. Растение обладает уникальным свойством-способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты - высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины - это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль - полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Органы, ткани и функциональные системы высших растений
Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и и

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission - отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва - растение - а

Поглощение и передвижение воды
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения - орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам - хлоропластам. Хлоропласты высших

Хлорофиллы
В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русс

Каротиноиды
Каротиноиды - жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ. Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание - это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз - это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков - переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта - массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды - сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) - это период от полного прекращения плодоношения до естественной смерти растения. Старение - это период закономерного ослабления процессов жизнедеятельности, из

Осенняя окраска листьев и листопад
Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов. Листья грабов, кленов и берез становятся светло-желтыми, д

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений - это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость - способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) - способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов. vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens - фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, - наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4-1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим

Растения можно сравнить с живыми организмами. Они также питаются, растут и размножаются. Под питанием растений садоводы подразумевают всасывание корневищем минеральных и органических веществ, которые в дальнейшем усваиваются либо перерабатываются растением в иные химические элементы.

Самый простой способ получить красивую лужайку перед домом

Вы, конечно же, видели идеальный газон в кино, на аллее, а возможно, и на соседской лужайке. Те, кто хоть раз пытался вырастить зеленую площадку у себя на участке, без сомнений скажут, что это огромный труд. Газон требует тщательной посадки, ухода, удобрения, полива. Однако так думают только неопытные садоводы, профессионалы давно знают про инновационное средство - жидкий газон AquaGrazz .

Для того чтобы корневая система могла всасывать нужное количество питательных веществ, необходима совокупность факторов. Такими стали: температура, кислотность почвы, концентрация и состав минералов, находящихся в грунте.

Исследования доказали, что помимо азота и кислорода для роста растения просто необходим полный комплекс элементов, иначе развитие будет медленным и неполноценным. Наиболее важными являются:

  • азот;
  • калий;
  • железо;
  • фосфор;
  • магний.

Виды питательных элементов

Практически каждый химический элемент может находится в различной форме, от которой будут зависеть его концентрация и способность к усваиванию растениями. Исходя из этого, элементы подразделяются на 3 группы:

  • ультрамикроэлементы. Используются для питания растений в особо малых количествах, но пренебрегать подобной подкормкой не стоит;
  • микроэлементы. Потребляются растениями в малом количестве;
  • макроэлементы. Растения требуют их в большом количестве, потому их внесение должно иметь глобальный характер.

Для оптимального развития растение должно получать весь комплекс минеральных веществ. При этом каждый элемент должен иметь свою концентрацию и нужную форму. Иначе растение его не впитает. Недостаточное минеральное питание растений проявляется признаками голодания. Опытный человек может сразу определить, чего именно не хватает растению и исправить ситуацию путем внесения необходимых элементов.


Аналогично этому, переизбыток элементов отразится на внешнем виде растения, но с решением такой проблемы могут возникнуть трудности. Даже малый переизбыток бора и магния способен затормозить процессы роста растения. Таким органом является корневище, именно оно, находясь на глубине, наиболее подвержено влиянию от передозировок химическими элементами.

Недостаток минеральных веществ также оказывает губительное влияние на растение. К примеру, резкое снижение концентрации магния может вызвать скорое голодание и остановку роста. Обусловлено это тем, что минеральные вещества, попадая в ткани растения, участвуют в создании клеток и органоидов. При этом минеральные вещества способны оказывать влияние на образование биоколлоидов, отсутствие которых уничтожит растение.

Какие элементы необходимы растению?

  • Азот. Является крайне важным элементом, поскольку его наличие необходимо для всех типов растений. Данное вещество способствует образованию аминокислот и белков. А при распаде азот образует аммиачные соединения, которые используются растениями в качестве азотного питания. При недостатке подобного элемента у растений начинается голодание, которое сопровождается замедлением роста и образованием мелких листьев. При этом побеги растения теряют свою форму, а нижние ярусы перестают развиваться. Первыми признаками азотного голодания является потемнение листвы, обусловленное замедленными процессами фотосинтеза. В дальнейшем проблемы увеличиваются, и отражается это в разрушении структуры листьев с их последующим опаданием.


  • Фосфор – в естественных условиях может встречаться в минеральной и органической формах. Все зависит от качественного состава почвы, а именно: если почва обладает повышенной кислотностью, там будет находиться повышенное количество минеральной формы фосфора. Обусловлено это все химической структурой и взаимодействием между веществами на молекулярном уровне. Естественно, на таких грунтах тип питания растения несколько изменится и перейдет в другую форму. Но признаки фосфорного голодания останутся такими же. В первую очередь, это пожелтение листьев и замедление почкообразования. Также явным признаком голодания может стать увядание цветов, они попросту не будут получать необходимого количества минералов.
  • Магний. Элемент, отвечающий за прочность растительных тканей. При его недостатке качество листвы резко упадет. Также следует указать, что магний воздействует не только на растение, но и на почву. Так, он с легкостью избавит почву от переизбытка извести и создаст нейтральные условия в почве, благодаря чему корневище будет усваивать большее количество элементов.
  • Калий. Этот элемент играет важную роль в развитии растений. Во-первых, он участвует в большинстве физиологических процессов, необходимых для жизни растения. А во-вторых, его наличие необходимо для хорошего развития корневища, от размеров и качеств которого будет зависеть дальнейшее минеральное питание растений. Еще калий обладает профилактическими свойствами и придает растениям устойчивость к низким температурам. Калий является основным элементом минерального питания растений. Недостаток данного элемента можно наблюдать по реакции верхушек растений: молодые листья получают желтый окрас и практически не развиваются.


  • Кальций представлен для растений в виде различных солей. Это могут быть фосфаты и карбонаты. Основное воздействие кальций оказывает именно на почву. При нормальной концентрации кальция почва раскисляется и становится оптимальной для развития и последующего питания растений. Естественно, растение потребляет кальций, но это количество настолько мало, что практически не учитывается.
  • Железо – используется растением для образования хлорофиллов. Недостаток железа проявляется быстрым старением листьев. Наступает фаза хлороза, и листва опадает. Бор и кобальт наравне с железом обладают функциями для образования хлоропластов и хлорофиллов.
  • Цинк – нужен растению для оптимального дыхания. Он обладает свойствами, которые позволяют клеткам растения впитывать СО2 и в дальнейшем перерабатывать его в кислород.

Как разделить питание растений?

В первую очередь, следует рассказать про почвенное питание растений. А поскольку большинство минералов находится под землей, именно такой тип питания отвечает за насыщение растения минеральными веществами. Питание происходит за счет корневой системы (это орган, способный выкачивать и перерабатывать вещества в форму, подходящую для питания и усвоения их растениями).

Комнатные растения живут в неестественных условиях: объем грунта ограничен горшком, а значит и количество питательных элементов ограничено.

Когда вы пересаживаете цветок в новый грунт вы даете ему достаточно элементов питания (в современных грунтах, продаваемых в магазинах, обычно достаточно сбалансированный состав, что позволяет обойтись без подкормок примерно 2 месяца), но по мере роста количество питательных веществ в почве уменьшается и растение начинает голодать в прямом смысле этого слова. А ослабленное растение — легкая добыча для вредителей и болезней.

Тогда приходят на помощь подкормки.
Подкормка растений почти всегда улучшает их состояние. Обнаружить недостаток питательных веществ в почве можно по внешним признакам: листочки начали желтеть, белеть, растение замедлило рост и т.п.

Макроэлементы для растений — это завтрак, обед и ужин

Это вещества, необходимые растениям в большом количестве, их концентрация составляет 0,1-10%.

Азот нужен для роста побегов и листьев. Если в почве недостает азота, окраска растений меняется: из насыщенно зеленой она становится бледной, желтоватой. Листья желтеют, мельчают и опадают, растение сбрасывает бутоны. Это называется хлороз — не болезнь, но ослабление растения.

Избыток азота приводит к буйному росту растения. Но это не хорошо, потому что ткани становятся рыхлыми, как будто слепленными на скорую руку, цветение оттягивается и растение становится подвержено заболеваниям. Обычное жидкое удобрение почти всегда содержит азот. Посмотрите на состав удобрения и вы увидите там латинскую букву N. Это и есть азот. Нужнее всего азотные удобрения в начале роста растения — весной. К осени его потребление снижается, а зимой азот нужно полностью исключить из подкормок.

Калий обеспечивает крепость тканей и иммунитет растения. Если калия недостаточно, края листьев закручиваются к низу, становятся морщинистыми, желтеют или буреют и отмирают. Сильная нехватка калия приводит к отмиранию старых листьев, молодые листья при этом сохраняются. Особенно нуждаются растения в калии во время цветения и плодоношения.

Фосфор необходим для здоровья растений, образования цветков, плодов и семян, формирует придаточные корни у черенков. Если фосфора мало, задерживается рост и развитие растений, они поздно зацветают или не зацветают вообще. При недостатке фосфора листья приобретают темно-зеленую или голубоватую окраску, на них появляются красно-фиолетовые пятна, а засыхающие листья имеют почти черный цвет. Избыток фосфора приводит к тому, что растение мельчает, нижние листья сморщиваются, желтеют и опадают. Особенно необходим фосфор в период бутонизации и цветения.

Кальций регулирует водный баланс. Недостаток кальция прежде всего сказывается на молодых побегах и листьях: они бледнеют и скручиваются, на них появляются коричневые пятна. Однако, излишек кальция намного вреднее его недостатка: он делает недоступными для растения соединения железа, вызывая хлороз.

Если вы заметили на поверхности почвы бело-бурые полосы, постарайтесь сменить почву полностью, пересадив растение в новый грунт. Если растение слишком большое — смените верхний слой почвы. Иначе растение может погибнуть. Качество воды для полива тоже имеет значение: жесткая вода содержит много кальция, который, в отличие от других элементов, вносится в почву с каждым поливом. Используйте для полива мягкую воду.

Магний способствует усвоению растениями фосфора. Недостаток магния ведет к хлорозу: листья становятся желтыми, красными, фиолетовыми между жилками и по краю листа. Листья скручиваются, плохо развивается корневая система, это приводит к истощению растений.

Железо участвует в образовании хлорофилла и дыхании. Если растению не хватает железа, листья становятся бледно-зелеными, но не отмирают. Недостаток железа ведет к полному хлорозу: бледнеет и обесцвечивается вся поверхность сначала молодых, а потом и всех остальных листьев. Появляются белые листья.

При недостатке серы растения отстают в росте, листья бледнеют.

Микроэлементы для растений — это витамины

Микроэлементы нужны растениям в очень малых дозах, их концентрация составляет менее 0,01%.
Белеют кончики листьев — растению недостает меди .
Верхушечные почки и корешки отмирают, растение не цветет, буреют и отмирают листья — в почве мало бора .
Растение не растет, а листья стали пестрыми — это недостаток марганца
При недостатке кобальта плохо развивается корневая система растений.
Появились светлые участки между жилками листьев, пожелтели кончики, листья стали отмирать — растению мало цинка.
Недостаток молибдена приводит к нарушению азотного обмена, вызывает желтение и пятнистость листьев, отмирание точки роста.
Натрий и хлор необходимы для для растений с морских побережий и солончаков. Однако в культуре эти растения обычно не предъявляют повышенных требований к засолению почвы.

Минеральное питание имеет огромное значение для физиологии растения, поскольку для его нормального роста и развития просто необходимо достаточное снабжение минеральными элементами. Растениям, помимо любви и заботы, требуются: кислород, вода, углекислый газ, азот и целая серия (более 10) минеральных элементов, служащих сырьем для разнообразных процессов существования организма.

Основные функции минеральных веществ

У минеральных питательных веществ в растениях много важных функций. Они могут играть роль структурных компонентов растительных тканей, катализаторов различных реакций, регуляторов осмотического давления, компонентов буферных систем и регуляторов проницаемости мембран. Примерами роли минеральных веществ, как составных частей растительных тканей, могут быть кальций в клеточных стенках, магний в молекулах хлорофилла, сера в определенных белках и фосфор в фосфолипидах и нуклеопротеидах. Что касается азота, то, хотя он и не относится к минеральным элементам, его часто включают в их число, в связи с этим его следует еще раз отметить как значимый компонент белка. Некоторые элементы, например, такие как железо, медь, цинк требуются в микродозах, но и эти небольшие количества необходимы, поскольку входят в состав простетических групп или коферментов определенных ферментных систем. Есть ряд элементов (бор, медь, цинк), которые в более высоких концентрациях смертельно ядовиты для растения. Их токсичность вероятнее всего связана с отрицательным влиянием на ферментные системы организма растения.

Значение достаточного обеспечения растений минеральным питанием уже давно оценено в садоводстве и является показателем хорошего роста и, следовательно, получения хороших и стабильных урожаев.

Самые необходимые элементы

В результате различных исследований было установлено наличие в растениях более половины элементов периодической системы Менделеева, и вполне возможно, что корнями может поглощаться любой элемент, находящийся в почве. Например, более 27 элементов (!) были обнаружены в некоторых образцах древесины сосны Веймутова. Считается, что далеко не все из имеющихся в растениях элементов им необходимы. Например, такие элементы как платина, олово, серебро, алюминий, кремний и натрий не считаются необходимыми. За необходимые минеральные элементы принято принимать те, при отсутствии которых растения не могут завершить жизненный цикл, и те, которые входят в состав молекулы какого-либо необходимого компонента растений.

Основные функции элементов минерального питания

Большинство исследований роли различных элементов было проведено на травянистых растениях, поскольку их жизненный цикл таков, что позволяет их изучать в течение короткого времени. Помимо этого некоторые опыты ставились на плодовых деревьях и даже сеянцах лесных пород. В результате этих исследований было установлено, что различные элементы как в травянистых, так и в древесных растениях выполняют одни и те же функции.

Азот. Общеизвестна роль азота как составной части аминокислот – строителей белков. Помимо этого, азот входит во множество других соединений, таких как пурины, алкалоиды, ферменты, регуляторы роста, хлорофилл и даже в клеточные мембраны. При недостатке азота постепенно нарушается синтез нормального количества хлорофилла, вследствие чего при его крайнем дефиците развивается хлороз как более старых, так и молодых листьев.

Фосфор. Этот элемент является неотъемлемым компонентом нуклеопротеидов и фосфолипидов. Фосфор незаменим, благодаря макроэнергетическим связям между фосфатными группами, служащими основным посредником в переносе энергии в растениях. Встречается фосфор как в неорганической, так и в органической формах. Он легко перемещается по растению, по всей видимости, и в той, и в другой форме. Недостаток фосфора в первую очередь влияет на рост молодых деревьев при отсутствии каких-либо симптомов.

Калий. Органические формы калия науке не известны, однако растениям необходимо достаточно большое его количество, по-видимому, для активности ферментов. Интересным фактом является то, что растительные клетки различают и калий, и натрий. Причем натрий в полной мере не может быть замещен калием. Принято считать, что калий играет роль осмотического агента при открывании и закрывании устьиц. Следует отметить также, что калий в растениях очень мобилен, а его недостаток затрудняет передвижение углеводов и метаболизм азота, но это действие скорее опосредованное, чем прямое.

Сера. Этот элемент является компонентом цистина, цистеина и других аминокислот, биотина, тиамина, кофермента А и многих других соединений, относящихся к сульфгидрильной группе. Если сравнивать серу с азотом, фосфором и калием, то можно сказать, что она отличается меньшей мобильностью. Недостаток серы вызывает хлороз и нарушение биосинтеза белков, что зачастую приводит к накоплению аминокислот.

Кальций. В довольно значительных количествах кальций можно обнаружить в клеточных стенках, и находится он там в виде пектата кальция, который, вероятнее всего, оказывает влияние на эластичность клеточных стенок. Помимо этого, он участвует в метаболизме азота, активируя несколько ферментов, в том числе амилазу. Кальций относительно мало подвижен. Недостаток кальция отражается на меристематических участках кончиков корней, а излишек – накапливается в виде кристаллов оксилата кальция в листьях и одревесневших тканях.

Магний. Входит в молекулу хлорофилла и участвует в работе ряда ферментных систем, участвует в поддержании целостности рибосом и легко передвигается. При недостатке магния обычно наблюдается хлороз.

Железо. Большая часть железа расположена в хлоропластах, где участвует в синтезе пластичных белков, а также входит в ряд дыхательных ферментов, например, таких как перокисдаза, каталаза, ферредоксин и цитохромокисдаза. Железо относительно неподвижно, что способствует развитию его дефицита.

Марганец. Необходимый элемент для синтеза хлорофилла, основной функцией его является активация ферментных систем и, вероятно, влияет на доступность железа. Марганец относительно неподвижен и ядовит, причем в листьях некоторых древесных культур его концентрация часто приближается к токсичному уровню. Недостаток марганца зачастую вызывает деформацию листьев и образование хлоротичных или мертвых участков.

Цинк. Этот элемент присутствует в составе карбоангидразы. Цинк, даже в относительно низких концентрациях, очень токсичен, а его недостаток приводит к деформациям листьев.

Медь. Медь является компонентом некоторых ферментов, в том числе аскорбинотоксидазы и тирозиназы. Растениям обычно необходимы очень небольшие количества меди, высокие концентрации которой токсичны, а ее недостаток вызывает суховершинность.

Бор. Элемент, также как и медь, необходим растению в очень маленьких количествах. Вероятнее всего, бор необходим для передвижения сахаров, а его недостаток вызывает серьезные повреждения и отмирание апикальных меристем.

Молибден. Это элемент необходимый растению в ничтожной концентрации, входит в состав нитратредуктазной ферментной системы и выполняет, скорее всего, и другие функции. Недостаток редок, но при его наличии может снижаться азотофиксация у облепихи.

Хлор. Функции его мало исследованы, по всей видимости, он участвует в расщеплении воды при фотосинтезе.

Симптомы недостатка минеральных веществ

Недостаток минеральных веществ вызывает изменения биохимических и физиологических процессов, что приводит к морфологическим изменениям. Зачастую из-за дефицита наблюдается подавление роста побегов. Наиболее заметный их недостаток проявляется в пожелтении листьев, а оно, в свою очередь, вызывается уменьшением биосинтеза хлорофилла. Исходя из наблюдений, можно отметить, что наиболее уязвимой частью растения являются листья: у них уменьшаются размеры, форма и структура, бледнеет окраска, образуются мертвые участки на кончиках, краях или между главными жилками, изредка листья собираются в пучки или даже розетки.

Следует привести примеры недостатка различных элементов у ряда наиболее распространенных культур.

Недостаток азота , прежде всего, сказывается на размере и окраске листьев. В них уменьшается содержание хлорофилла и теряется интенсивная зеленая окраска, а листья становятся светло-зелеными, оранжевыми, красными или пурпурными. Черешки листьев и их жилки приобретают красноватый оттенок. Одновременно с этим уменьшается и размер листовой пластинки. Угол наклона черешка к побегу становится острым. Отмечается ранний листопад, резко уменьшается число цветков и плодов одновременно с ослабеванием роста побегов. Побеги становятся коричнево-красными, а плоды – мелкими и ярко окрашенными. Отдельно стоит упомянуть землянику, у которой недостаток азота приводит к слабому образованию усов, покраснению и раннему пожелтению старых листьев. Но и обилие азота также неблагоприятно сказывается на растении, вызывая излишнее укрупнение листьев, их насыщенный, слишком темно-зеленый цвет и, напротив, слабую окраску плодов, их раннее опадение и плохое хранение. Растение–индикатор на недостаток азота – яблоня.

Окончание следует

Николай Хромов, кандидат сельскохозяйственных наук, научный сотрудник, отдел ягодных культур ГНУ ВНИИС им. И.В. Мичурина, член академии НИРР

 

 

Это интересно: