→ Межмолекулярные водородные связи. Водородная связь, межмолекулярное взаимодействие. Значение межмолекулярной водородной связи

Межмолекулярные водородные связи. Водородная связь, межмолекулярное взаимодействие. Значение межмолекулярной водородной связи

Одной молекулы и атомами водорода другой, типа Н-Х (Х - это F, O, N, Cl, Br, I) за счет сил электростатического притяжения.

Связь между водородом и одним из этих атомов характеризуется достаточной полярностью, поскольку связующее электронное облако смещено в сторону более электроотрицательного атома. Водород в данном случае расположен на положительном конце диполя. Два и более таких диполя взаимодействуют между собой так, что ядро атома водорода одной молекулы (положительный конец диполя) притягивается неподеленной электронной парой второй молекулы. Данная связь проявляется в газах, жидкостях и твердых телах.

Она относительно прочна. Наличие водородной связи обусловливает повышение устойчивости молекул вещества, а также повышению их температуры кипения и плавления. Образование водородных связей играет важную роль как в химических, так и в биологических системах.

Водородная связь бывает внутри- и межмолекулярной (рис. 14), молекулы карбоновых кислот в неполярных растворителях димеризуются за счет двух межмолекулярных водородных связей.

а б

Рис. 14. Образование водородной связи: а - внутримолекулярной; б - межмолекулярной.

Существование веществ в различных агрегатных состояниях свидетельствует о том, что между частицами (атомы, ионы, молекулы) имеет место взаимодействие, обусловленное ван-дер-ваальсовыми силами притяжения. Наиболее важной и отличительной чертой этих сил является их универсальность, так как они действуют без исключения между всеми атомами и молекулами.

Водородные связи влияют на физические (т.кип. и т.пл., летучесть, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений.

Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества. Например, этиловый спирт C 2 H 5 OH, способный к ассоциации, кипит при +78,3°С, а диметиловый эфир СН 3 ОСН 3 , не образующий водородных связей, лишь при 24°С (молекулярная формула обоих веществ С 2 Н 6 О).

Образование Н-связей с молекулами растворителя способствует улучшению растворимости. Так, метиловый и этиловый спирты (CH 3 OH, С 2 Н 5 ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.

Внутримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства. Например, Н-связь внутри молекул салициловой кислоты повышает ее кислотность.


Водородные связи и их влияние на свойства вещества

Также в настоящее время есть мнение, что водородная химическая связь бывает слабой и сильной.

Они отличаются друг от друга по энергии и длине связи (расстояние между атомами):

1. Водородные связи слабые. Энергия - 10-30 кДж/моль, длина связи - 30. Все вещества, перечисленные выше, являются примерами нормальной или слабой водородной связи.

2. Водородные связи сильные. Энергия - 400 кДж/моль, длина - 23-24.

Водородная связь - это связь между положительно поляризованным атомом водорода одной молекулы и атомом, обладающим высокой электроотрицательностью и имеющим свободную пару электронов (например F, О, N) другой или той же молекулы. Водородная связь имеет частично электростатический, частично донорно-акцепторный характер и обладает направленностью и насыщаемостью. Она образуется за счет диполь-диполыюго взаимодействия, а также перекрывания орбиталей атомов с высокой электро- отрицательиостыо, содержащих свободные пары электронов, с вакантными орбиталями другого атома. Если водородная связь образуется между атомами разных молекул, она называется межмолекулярной у а если между атомами одной молекулы - внутримолекулярной. В графическом виде водородная связь изображается тремя точками.

  • 3.5. Водородная связь

Циклические структуры встречаются в органических молекулах, повышая температуру кипения веществ.

Энергия водородной связи возрастает с увеличением электроотрицательности и уменьшением размера отрицательно поляризованного атома. Поэтому наиболее прочные водородные связи между атомами возникают, когда в качестве последних выступают атомы F, О или N. Энергия водородной связи (кДж/моль) уменьшается в ряду:

При возникновении водородных связей образуются димеры, тримеры, полимерные, кольцевые и более сложные структуры. Соседство электроотрицательных атомов может также активировать образование водородных связей у атомов СН-групп (хотя электроотрицательности углерода и водорода почти одинаковы). Этим объясняется возникновение водородных связей между молекулами в жидких IICN, CF 3 H и др.

Аномальные свойства HF в водном растворе объясняются повышенной склонностью фтороводорода к полимеризации. Даже при Т кип безводный фтороводород в парах полностью димеризован (HF) 2 . С понижением температуры степень полимеризации возрастает, а при температуре кипения фтороводород находится в виде (HF) r По способности полимеризоваться HF напоминает воду, которая в конденсированной фазе существует в виде ассоциатов (Н 2 0) п.

Благодаря водородным связям фтороводородная (плавиковая) кислота, в отличие от ее аналогов НС1, НВг и HI, не является сильной кислотой и образует соли типа NaHF 2 , KHF 2 , в которых имеется ион FHF .

Несмотря на высокую электроотрицателыюсть у хлора, водородная связь - H---CI - относительно слабая из-за большого размера атома хлора. Поэтому водный раствор хлороводорода (хлороводородная или соляная кислота) является сильной кислотой и сильным электролитом.

Энергия водородной связи имеет промежуточное значение между энергией ковалентной связи и энергией вандерва- альсовых сил.

Наиболее удобным индикатором наличия водородной связи является температура кипения, так как ее легко измерить. В рядах сходных соединений температуры кипения и теплоты парообразования обычно увеличиваются с ростом молярной массы. Однако при переходе от HF к НС1, от 11 7 () к H 2 S и от NII.j к РН 3 эти параметры наоборот резко уменьшаются (рис. 3.23), что свидетельствует об образовании между молекулами HF, Н 2 0 и NH., сильных водородных связей.


Рис. 3.23.

Рис. 3.24.

Важную роль водородные связи играют в структуре воды и льда. На рис. 3.24 показан фрагмент структуры льда. Каждый атом кислорода в этой структуре тетраэдрически связан с четырьмя другими атомами кислорода. Между ними располагаются атомы водорода, два из которых соединены с атомом кислорода полярной ковалентной связью, два других - водородной связью, т.е. входят в состав двух других молекул воды. При этом создается ажурная структура, далекая от плотной упаковки. Поэтому плотность льда меньше плотности воды, так как при его плавлении водородные связи частично разрушаются (примерно на 10%), приводя к некоторому сближению молекул воды. Дальнейшее нагревание воды, с одной стороны, приводит к ее расширению, т.е. увеличению объема, а с другой - вызывает дальнейшее разрушение водородных связей и тем самым уменьшение объема. В результате зависимость плотности воды от температуры имеет максимум при 4°С.

Если взглянуть на хронологию изучения в химической науке способности атомов различных элементов к взаимодействию между собой, то можно выделить середину XIX столетия. В это время ученые обратили внимание на то, что водородные соединения кислорода, фтора, азота характеризуются группой свойств, которые можно назвать аномальными.

Это прежде всего очень высокие температуры плавления и кипения, например у воды или фтороводорода, которые являются большими, чем у других похожих соединений. В настоящее время уже известно, что эти особенности указанных веществ определяются свойством водородных атомов образовывать необычный тип связи с атомами элементов, имеющими высокий показатель электроотрицательности. Ее назвали водородной. Свойства связи, специфика ее образования и примеры соединений, содержащих ее, - вот главные моменты, на которых мы остановимся в нашей статье.

Причины возникновения связи

Действие сил электростатического притяжения - это физическая основа появления большинства видов химической связи. Типы химических связей, возникших благодаря взаимодействию противоположно заряженных атомных ядер одного элемента и электронов другого, хорошо известны. Это ковалентная неполярная и полярная связи, характерные для простых и сложных соединений неметаллических элементов.

Например, между атомом фтора, у которого электроотрицательность наибольшая, и электронейтральной частицей водорода, одноэлектронное облако которой вначале принадлежало только атому H, происходит смещение отрицательно заряженной плотности. Теперь сам атом водорода можно по праву назвать протоном. Что же происходит далее?

Электростатическое взаимодействие

Электронное облако водородного атома практически полностью переходит в сторону частицы фтора, и та приобретает избыточный негативный заряд. Между оголенным, то есть лишенным негативной плотности, атомом водорода - протоном, и ионом F - соседней молекулы фтороводорода проявляется сила электростатического притяжения. Она приводит к появлению межмолекулярной водородной связи. Благодаря ее возникновению, сразу несколько молекул HF могут образовывать устойчивые ассоциаты.

Главным условием формирования водородной связи является наличие атома химического элемента, имеющего высокую электроотрицательность, и взаимодействующего с ним протона водорода. Наиболее ярко этот тип взаимодействия проявляется в соединениях кислорода и фтора (вода, фтористый водород), меньше - в азотсодержащих веществах, например аммиаке, и еще меньше - у соединений серы и хлора. Примеры водородной связи, образующейся между молекулами, можно встретить и у органических веществ.

Так, у спиртов между атомами кислорода и водорода функциональных гидроксильных групп также возникают силы электростатического притяжения. Поэтому уже первые представители гомологического ряда - метанол и этиловый спирт - являются жидкостями, а не газами, как другие вещества такого состава и молекулярной массы.

Энергетическая характеристика связи

Сравним между собой энергоемкость ковалентной (40-100 ккал/моль) и водородной связи. Примеры, приведенные далее, подтверждают следующее утверждение: водородный тип содержит всего от 2 ккал/моль (между димерами аммиака) до 10 ккал/моль энергии в соединениях фтора. Но ее оказывается достаточно для того, чтобы частицы некоторых веществ смогли связываться в ассоциаты: димеры, тетра - и полимеры - группы, состоящие из многих молекул.

Они находятся не только в жидкой фазе соединения, но могут сохраняться, не распадаясь, при переходе в состояние газа. Поэтому водородные связи, обеспечивающие удерживание молекул в группах, служат причиной аномально высоких температур кипения и плавления аммиака, воды или фтороводорода.

Как происходит ассоциация молекул воды

Как неорганические, так и органические вещества имеют несколько типов химической связи. Химическая связь, возникающая в процессе ассоциации полярных частиц между собой, и называемая межмолекулярной водородной, может коренным образом изменять физико-химическую характеристику соединения. Докажем это утверждение, рассматривая свойства воды. Молекулы H 2 O имеют вид диполей - частиц, полюса которых несут противоположные заряды.

Соседние молекулы притягиваются друг к другу положительно заряженными протонами водорода и отрицательными зарядами атома кислорода. В результате этого процесса образуются молекулярные комплексы - ассоциаты, приводящие к появлению аномально высоких температур кипения и плавления, большой теплоемкости и теплопроводности соединения.

Уникальные свойства воды

Присутствие водородных связей между частицами H 2 O является причиной многих ее жизненно важных свойств. Вода обеспечивает важнейшие реакции обмена веществ - гидролиз углеводов, белков и жиров, протекающий в клетке, - и является растворителем. Такую воду, входящую в состав цитоплазмы или межклеточной жидкости, именуют свободной. Благодаря водородным связям между молекулами, она образует гидратные оболочки вокруг белков и гликопротеидов, которые предотвращают слипание между макромолекулами полимеров.

В этом случае воду называют структурированной. Приведенные нами примеры водородной связи, возникающей между частицами H 2 O, доказывают ее ведущую роль в формировании основных физических и химических свойств органических веществ - белков и полисахаридов, в процессах ассимиляции и диссимиляции, протекающих в живых системах, а также в обеспечении их теплового баланса.

Внутримолекулярная водородная связь

Салициловая кислота - одно из хорошо известных и давно применяемых в медицине лечебных средств, обладающих противовоспалительным, ранозаживляющим и антимикробным эффектом. Сама кислота, бромопроизводные фенола, органические комплексные соединения способны формировать внутримолекулярную водородную связь. Примеры, приведенные далее, показывают механизм ее образования. Так, в пространственной конфигурации молекулы салициловой кислоты возможно сближение атома кислорода карбонильной группы и протона водорода гидроксильного радикала.

Вследствие большей электроотрицательности кислородного атома, электрон частицы водорода практически полностью попадает под влияние ядра кислорода. Внутри молекулы салициловой кислоты возникает водородная связь, которая повышает кислотность раствора вследствие увеличения концентрации в нем ионов водорода.

Подводя итог, можно сказать, что данный тип взаимодействия между атомами проявляется в случае, если группа донора (частицы, отдающей электрон) и атома акцептора, принимающего его, входят в состав одной и той же молекулы.

Содержание статьи

ВОДОРОДНАЯ СВЯЗЬ (Н-связь)– особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий.

Особенности водородной связи.

Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе.

В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: А d- –Н d+ .

Возникший частичный положительный заряд на атоме водорода позволяет ему притягивать другую молекулу, также содержащую электроотрицательный элемент, таким образом, основную долю в образование Н-связи вносят электростатические взаимодействия.

В формировании Н-связи участвуют три атома, два электроотрицательных (А и Б) и находящийся между ними атом водорода Н, структура такой связи может быть представлена следующим образом: Б···Н d+ –А d- (водородную связь обычно обозначают точечной линией). Атом А, химически связанный с Н, называют донором протона (лат. donare – дарить, жертвовать), а Б – его акцептором (лат. acceptor – приемщик). Чаще всего истинного «донорства» нет, и Н остается химически связанным с А.

Атомов – доноров А, поставляющих Н для образования Н-связей, не много, практически всего три: N, O и F, в то же время набор атомов-акцепторов Б весьма широк.

Само понятие и термин «водородная связь» ввели В.Латимер и Р.Родебуш в 1920, для того, чтобы объяснить высокие температуры кипения воды, спиртов, жидкого HF и некоторых других соединений. Сопоставляя температуры кипения родственных соединений Н 2 O, Н 2 S, Н 2 Se, и Н 2 Te, они обратили внимание на то, что первый член этого ряда – вода – кипит намного выше, чем это следовало из той закономерности, которую образовали остальные члены ряда. Из этой закономерности следовало, что вода должна кипеть на 200° С ниже, чем наблюдаемое истинное значение.

Точно такое же отклонение наблюдается для аммиака в ряду родственных соединений: NН 3 , Н 3 P, Н 3 As, Н 3 Sb. Его истинная температура кипения (–33° С) на 80° С выше ожидаемого значения.

При кипении жидкости разрушаются только Ван-дер-Ваальсовы взаимодействия, те, что удерживают молекулы в жидкой фазе. Если температуры кипения неожиданно высокие, то, следовательно, молекулы связаны дополнительно еще какими-то силами. В данном случае это и есть водородные связи.

Точно также повышенная температура кипения спиртов (в сравнении с соединениями, не содержащими группу -ОН) – результат образования водородных связей.

В настоящее время надежный способ обнаружить Н-связи дают спектральные методы (чаще всего инфракрасная спектроскопия). Спектральные характеристики групп АН, связанных водородными связями, заметно отличаются от тех случаев, когда такая связь отсутствует. Кроме того, если структурные исследования показывают, что расстояние между атомами Б – Н меньше суммы Ван-дер-Ваальсовых радиусов, то считают, что присутствие Н-связи установлено.

Помимо повышенной температуры кипения водородные связи проявляются себя также при формировании кристаллической структуры вещества, повышая его температуру плавления. В кристаллической структуре льда Н-связи образуют объемную сетку, при этом молекулы воды располагаются таким образом, чтобы атомы водорода одной молекулы были направлены к атомам кислорода соседних молекул:

Борная кислота В(ОН) 3 имеет слоистую кристаллическую структуру, каждая молекула связана водородными связями с тремя другими молекулами. Упаковка молекул в слое образует паркетный узор, собранный из шестиугольников:

Большинство органических веществ не растворимо в воде, когда такое правило нарушается, то, чаще всего, это результат вмешательства водородных связей.

Кислород и азот – основные доноры протонов, они берут на себя функцию атома А в рассмотренной ранее триаде Б···Н d+ –А d- . Они же, чаще всего, выступают в роли акцепторов (атом Б). Благодаря этому некоторые органические вещества, содержащие O и N в роли атома Б, могут растворяться в воде (роль атома А исполняет кислород воды). Водородные связи между органическим веществом и водой помогают «растащить» молекулы органического вещества, переводя его в водный раствор.

Существует эмпирическое правило: если органическое вещество содержит не более трех атомов углерода на один атом кислорода, то оно легко растворяется в воде:

Бензол весьма незначительно растворим в воде, но если заменить одну группу СН на N, то получим пиридин С 5 Н 5 N, который смешивается с водой в любых соотношениях.

Водородные связи могут проявить себя и в неводных растворах, когда на водороде возникает частичный положительный заряд, а рядом находится молекула, содержащая «хороший» акцептор, как правило кислород. Например, хлороформ HCCl 3 растворяет жирные кислоты, а ацетилен HCєCH растворим в ацетоне:

Этот факт нашел важное техническое применение, ацетилен, находящийся под давлением, очень чувствителен к легким сотрясениям и легко взрывается, а его раствор в ацетоне под давлением безопасен в обращении.

Важную роль играют водородные связи в полимерах и биополимерах. В целлюлозе – основном компоненте древесины – гидроксильные группы, расположены в виде боковых групп полимерной цепи, собранной из циклических фрагментов. Несмотря на сравнительно слабую энергию каждой отдельной Н-связи, их взаимодействие на всем протяжении полимерной молекулы приводит к столь мощному межмолекулярному взаимодействию, что растворение целлюлозы становится возможным лишь при использовании экзотического высокополярного растворителя – реактива Швейцера (аммиачный комплекс гидроксида меди).

В полиамидах (капрон, нейлон) Н-связи возникают между карбонильными и аминогруппами >С=О···Н–N

Это приводит к образованию кристаллических областей в структуре полимера и увеличению его механической прочности.

То же самое происходит в полиуретанах, имеющих строение, близкое к полиамидам:

NH-C(O)O-(CH 2) 4 -OC(O)-NH-(CH 2) n -NH-C(O)O-

Образование кристаллических областей и последующее упрочнение полимера происходит благодаря образованию Н-связей между карбонильными и аминогруппами >С=О···Н–N<.>

Аналогичным образом происходит объединение параллельно уложенных полимерных цепочек в белках, однако Н-связи предоставляют белковым молекулам также иной способ упаковки – в виде спирали, при этом витки спирали закреплены все теми же водородными связями, возникающими между карбонильной и аминогруппой:

В молекуле ДНК записана вся информация о конкретном живом организме в виде чередующихся циклических фрагментов, содержащих карбонильные и аминогруппы. Таких фрагментов четыре типа: аденин, тимин, цитозин и гуанин. Они расположены в виде боковых подвесков вдоль всей полимерной молекулы ДНК. Порядок чередования этих фрагментов определяет индивидуальность каждого живого существа., При парном взаимодействие карбонильных С=О и аминогрупп NH, а также аминогрупп NH и атомов азота, не содержащих водород, возникают Н-связи, именно они удерживает две молекулы ДНК в форме широко известной двойной спирали:

К образованию Н-связи (в роли акцепторов протонов) склонны комплексы некоторых переходных металлов; наиболее расположены к участию в Н-связи комплексы металлов VI–VIII групп. Для того, чтобы такая связь возникла в ряде случае необходимо участие мощного донора протона, например, трифторуксусной кислоты. На первой стадии (см. рисунок ниже) возникает Н-связь с участием атома металла иридия (комплекс I), играющего роль акцептора Б.

Далее при понижении температуры (от комнатной до –50° С) протон переходит к металлу и появляется обычная связь М–Н. Все превращения обратимы, в зависимости от температуры протон может передвигаться либо к металлу, либо к своему донору – аниону кислоты.

На второй стадии металл (комплекс II) принимает протон, а вместе с ним положительный заряд и становится катионом. Образуется обычное ионное соединение (как NaCl). Однако, перейдя к металлу, протон сохраняет свою постоянную тягу к различным акцепторам, в данном случае к аниону кислоты. В результате появляется Н-связь (отмечена звездочками), дополнительно стягивающая ионную пару:

Атом водорода может участвовать в роли атома Б, то есть, акцептора протона в том случае, когда на нем сосредоточен отрицательный заряд, это реализуется в гидридах металлов: М d+ –Н d- , соединениях, содержащих связь металл – водород. Если гидрид металла взаимодействует с донором протона средней силы (например, фторированным трет -бутанолом), то возникает необычный диводородный мостик, где водород сам с собой организует Н-связь: М d+ –Н d- ···Н d+ –А d- :

В показанном комплексе клиновидными линиями со сплошной заливкой или поперечной штриховкой обозначены химические связи, направленные к вершинам октаэдра.

Михаил Левицкий

Водород — простейший химический элемент во Вселенной. Его атом состоит всего из одного протона в ядре и одного электрона. Несмотря на свою физическую и химическую простоту, водород является основным элементом мироздания, благодаря ему горят и светятся звезды, наша планета покрыта водой, а сложнейшие органические соединения дали начало самому удивительному явлению во Вселенной — .

Особенности вещества

В природе встретить водород в составе других элементов таблицы Менделеева можно повсюду. Самым ярким примером такого соединения является такое вещество, как .

Водород имеет три изотопа:

  • протий Н (тот самый первый элемент таблицы Менделеева, привычный нам всем водород);
  • дейтерий (так называемый тяжелый водород, содержащий в ядре не только протон, но и нейтрон);
  • тритий — радиоактивный изотоп водорода, ядро которого состоит из протона и двух нейтронов.

Водородная связь характерна и присутствует в большинстве органических соединений. Соединяясь с хлором, водород образует хлорную кислоту, с кислородом — воду, с азотом — аммиак. Данные явления, обнаруженные в конце 19 века, были открыты русскими химиками М. Ильинским и Н. Бекетовым.

Ученые установили, что содержащая водород группа атомов чаще всего образует стабильные объединения с заряженным отрицательно атомом, который может входить в состав той или ной молекулы (не исключено, что даже в ту же самую). Данная дополнительная «сцепка» называется водородной связью.

Природа явления

Дадим определение водородной связи (в.с.). Это взаимодействие между отрицательно заряженными частицами молекул, реализованным атомом водорода.

Если чертой обозначить связь ковалентного типа, а тремя точками — водородную, то символически можно отобразить в.с. между молекулами А и В таким образом: .

Природу данного межатомного явления понять довольно просто. Атом Н несет положительные заряды δ+, если он встречает на своем пути заряженный отрицательно и обладающий зарядом δ−, то вступает с ним в электростатический контакт.

Важно! Чаще всего в.с. заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твердым и жидким телам.

Ковалентность

Несмотря на то, что в.с. может протекать в рамках двух частиц пары совершенно разных молекул, водородная химическая не является молекулярной связью. Свойство направления и насыщения — одно из качеств в.с., которое делает ее очень похожей на ковалентную. Отметим, что во многих теориях, в.с. считается видом и это совершенно никак не влияет на результаты, поэтому можно считать данное мнение корректным. Более того, сама природа в.с. очень близка к ковалентной.

Это можно легко продемонстрировать при помощи традиционных химических методов, рассчитывающих орбитали внутри молекул. В этом исчислении она будет представлять собой трехцентровые двухэлектронные связи. В очередной раз это доказывает, что отнесение ВС к разновидности ковалентной не несет ничего антинаучного.

Процесс образования

Каков способ образования. Образуются водородные связи между электроотрицательными атомами, один из которых имеет свободную электронную пару.

Самым убедительным признаком в.с. является дистанция между атомом Н и вторым атомом. Все дело в том, что дистанция между атомами меньше, чем сумма двух атомарных радиусов. Не смотря на часто встречающуюся асимметрию (когда в , дистанция превышает расстояние ) все равно сумма радиусов атомов больше, чем расстояние между ними.

Да, асимметрия в в.с. встречается часто, однако существуют и симметричные конструкции, например HF. Угол между первым и вторым атомом в системе приближен к 180 градусам. Вспоминая фтороводороды HF, следует заметить, что соединение с фтором — одно из самых крепких. HF представляет собой ион симметричного типа . В нем энергия водородных соединений составляет порядка 150 килоджоулей в одном моле. Ковалентная связь фтороводорода приблизительно такая же. В воде Н 2 О в.с. значительно меньше — около 20 килоджоулей на моль.

Соединение частиц через водород найдено в большом количестве различных соединений. Химическая связь часто возникает между фтором, азотом и , так как последние являются самыми электроотрицательными элементами. Редко обнаруживается между хлором, серой и прочими элементами, не являющимися металлами.

Важно! Азот и кислород — основа жизни, эти элементы содержатся в особо высокой концентрации в углеводах, белках и нуклеиновой кислоте. Если бы между этими веществами не было прочного контакта через атом Н, жизнь на Земле была бы невозможна.

Межмолекулярная водородная связь — разновидность образования крепкой структуры, связывающей через атом Н одну молекулу с другой. Ярким примером является муравьиная кислота. Она представляет собой молекулу, состоящую из двух или более простых молекул (димер).

Внутримолекулярная ВС — разновидность, при которой атом Н является связующим звеном в рамках одной молекулы.

То же самое относится к фтороводороду, который находится в газообразном состоянии. Он содержит такие полимерные структуры, которые могут состоять из четырех простых молекул НF, объединенных друг с другом через водород.

Примеры водородной межмолекулярной конструкции искать не приходится: растворимость глюкозы, фруктозы, сахарозы в водном растворе объясняются именно при помощи водорода и его соединительным свойствам. Молекулярные структуры живых организмов (молекула , например) содержат миллионы сложных конструкций, связанных водородом.

Функция соединений

Насколько важна социальная роль данных связей. Рассмотрим несколько веществ, которые существуют благодаря водородному соединению. Мы будем сравнивать эти молекулы с водой. Чтобы наши размышления были честными, мы будем выбирать для сравнения исключительно неметаллы. Эти вещества называются халькогеноводородами.

Например, теллур. Водородное соединение H 2 Te кипит при температуре -2 градуса. Что касается, селена, то H 2 Se кипит при температуре -42 градуса, а серный халькогеноводород H 2 S кипит при -60 градусах. Поразительно то, что вода кипит при +100 градусах.

Внимание! Если бы не было в.с., а кислород не обладал настолько «цепкими» качествами, при существующем климате на Земле не существовало бы воды в жидком состоянии. Такая высокая температура кипения — непосредственное следствие водородной связи.

«Сцепление» атомов кислорода с водородом показано на следующем изображении.

Но на этом удивительные свойства воды не заканчиваются. Следует также помнить о ее плавлении. И снова водородная связь — именно из-за нее при плавлении плотность начинает расти. При таянии льда, каждое десятое водородное соединение разрушается, из-за чего молекулы воды приближаются друг к другу.

Типы и свойства водородной связи.

Водородная связь. Самоподготовка к ЕГЭ и ЦТ по химии

Вывод

Образования водородной связи влияют на кислотность веществ. К примеру, плавиковая кислота НF является достаточно слабой. При этом другие галогеноводородные кислоты довольно сильны. Причина этого в том, что Н соединен сразу с двумя атомами F, а это не дает им возможности отцепиться. Именно благодаря этому, НF- единственная кислота, образующая кислую соль NaHF 2 .

 

 

Это интересно: